Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Yong Wu, Yu-Hong Xue and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.038$
$w R$ factor $=0.109$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Aqua(oxydiacetato- $\left.\kappa^{3} O, O^{\prime}, O^{\prime \prime}\right)(1,10-$ phenanthroline $\left.-\kappa^{2} N, N^{\prime}\right)$ cobalt(II) sesquihydrate

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right) \mathrm{H}_{2} \mathrm{O}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, consists of the octahedral complex and lattice water. The asymmetric unit contains two molecules of the complex, which form a hydrogen-bonded dimer. The overlapped arrangement and shorter separations of 3.532 (6) and 3.385 (12) \AA between neighboring parallel phenanthroline rings suggest the existence of $\pi-\pi$-stacking interactions.

Comment

Aromatic $\pi-\pi$ stacking interactions are important for some biological systems (Deisenhofer \& Michel, 1989). As part of our investigation of $\pi-\pi$ stacking in metal complexes (Chen et al., 2003), the title $\mathrm{Co}^{\mathrm{II}}$ complex, (I), was prepared.

(I)
$\mathrm{Co}^{\mathrm{II}}$ compound (I) is isomorphous with the $\mathrm{Ni}^{\mathrm{II}}$ (Baggio et al., 2000) and $\mathrm{Zn}^{\mathrm{II}}$ analogues (Baggio et al., 1996). The asymmetric unit of (I) contains two molecules of the complex and three molecules of lattice water, as shown in Fig. 1. The two independent complex molecules display a similar octa-

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonding.

Received 15 August 2003 Accepted 26 August 2003 Online 30 August 2003
\qquad

Figure 2
The molecular packing diagram, showing the hydrophilic and hydrophobic layered structure. H atoms have been omitted for clarity.

(a)

(b)

Figure 3
A diagram showing the $\pi-\pi$ stacking between (a) N 1 -phen and $\mathrm{N} 1^{\text {iii }}$-phen rings, and (b) N 3 -phen and $\mathrm{N} 3^{\mathrm{iv}}$-phen rings. [Symmetry codes: (iii) $1-x$, $-y, 1-z$; (iv) $-x, 1-y, 1-z$.]
hedral coordination geometry (Table 1), formed by a phenanthroline (phen), a meridional oxydiacetate and a coordinated water molecule. The lattice water molecules are hydrogen bonded to the adjacent carboxyl groups (Table 2). Through hydrogen bonding between carboxyl groups and coordinated water molecules, two independent complex mol-
ecules link to each other to form a dimer (Fig. 1). All lattice water molecules are ordered in the $\mathrm{Co}^{\mathrm{II}}$ compound, as is the case in the isomorphous $\mathrm{Zn}^{\mathrm{II}}$ complex but different from the disorder found in the isomorphous $\mathrm{Ni}^{\mathrm{II}}$ complex.

The molecular packing in the unit cell is illustrated in Fig. 2. The crystal structure consists of the hydrophilic layers formed by carboxylate and water molecules and hydrophobic layers formed by phen ligands. Parallel disposition of phen ligands is observed in the crystal. Fig. 3 shows the overlapped arrangement of neighboring parallel phen ligands. The separations of 3.532 (6) Å between N1-phen and N1 $1^{\text {iii }}$-phen and 3.385 (12) \AA between the N 3 -phen and $\mathrm{N} 3{ }^{\mathrm{iv}}$-phen [symmetry codes: (iii) $1-x,-y, 1-z$; (iv) $-x, 1-y, 1-z]$ suggest the existence of aromatic $\pi-\pi$ stacking between phen ligands.

Experimental

An aqueous solution (10 ml) containing $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{~g}, 1 \mathrm{mmol})$ and $1,10-$ phenanthroline ($0.18 \mathrm{~g}, 1 \mathrm{mmol}$) was mixed with an aqueous solution (10 ml) containing oxydiacetic acid hydrate $(0.15 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{NaOH}(0.08 \mathrm{~g}, 2 \mathrm{mmol})$ at room temperature. The mixture was refluxed for 3 h . Pink single crystals of the title compound were obtained from the filtrate after 2 weeks.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.$ -
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=416.25$
Monoclinic, $P 2_{1} / c$
$a=10.4722$ (16) \AA
$b=24.3161$ (9) \AA
$c=13.6729(14) \AA$
$\beta=93.627$ (1) ${ }^{\circ}$
$V=3474.7$ (7) \AA^{3}
$Z=8$

Data collection

Bruker SMART CCD
diffractometer
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.715, T_{\text {max }}=0.810$
21949 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.109$
$S=0.93$
7932 reflections
479 parameters

Table 1

Selected geometric parameters $(\AA$).

$\mathrm{Co} 1-\mathrm{O} 1$	$2.070(2)$	$\mathrm{Co} 2-\mathrm{O} 12$	$2.060(2)$
$\mathrm{Co} 1-\mathrm{O} 6$	$2.074(2)$	$\mathrm{Co} 2-\mathrm{O} 10$	$2.096(2)$
$\mathrm{Co} 1-\mathrm{O} 4$	$2.084(2)$	$\mathrm{Co} 2-\mathrm{O} 7$	$2.117(2)$
Co1-N2	$2.098(2)$	$\mathrm{Co} 2-\mathrm{N} 3$	$2.118(2)$
Co1-N1	$2.116(2)$	$\mathrm{Co} 2-\mathrm{O} 9$	$2.118(2)$
Co1-O3	$2.130(2)$	$\mathrm{Co} 2-\mathrm{N} 4$	$2.119(2)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H61 . O 8	0.87	1.79	2.647 (3)	169
O6-H62 . ${ }^{\text {O } 11^{\text {i }}}$	0.92	1.77	2.685 (3)	178
O12-H121 \cdots O5	0.91	1.77	2.676 (3)	175
$\mathrm{O} 12-\mathrm{H} 122 \cdots \mathrm{O} 2^{\text {ii }}$	0.96	1.64	2.596 (3)	171
$\mathrm{O} 21-\mathrm{H} 211 \cdots \mathrm{O} 1$	0.91	2.04	2.933 (3)	166
$\mathrm{O} 21-\mathrm{H} 212 \cdots \mathrm{O} 5^{\mathrm{i}}$	0.95	1.95	2.890 (3)	168
$\mathrm{O} 22-\mathrm{H} 221 \cdots \mathrm{O} 7$	0.95	1.94	2.867 (3)	163
$\mathrm{O} 22-\mathrm{H} 222 \cdots \mathrm{O} 11^{\text {i }}$	0.88	1.95	2.811 (3)	168
$\mathrm{O} 23-\mathrm{H} 231 \cdots \mathrm{O} 10$	0.87	2.07	2.915 (3)	165
$\mathrm{O} 23-\mathrm{H} 232 \cdots \mathrm{O} 22^{\text {ii }}$	0.87	2.24	3.094 (3)	168

Symmetry code: (i) $1+x, y, z$; (ii) $x-1, y, z$.
H atoms of the water molecules were located in a difference Fourier map and were included in the structure-factor calculations with fixed coordinates and isotropic displacement parameters of $0.05 \AA^{2}$. Other H atoms were placed in calculated positions, with $\mathrm{C}-$ $\mathrm{H}=0.93 \AA$ (phen) or $0.97 \AA$ (oxydiacetate) and were included in the final cycles of refinement in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (Nos. 29973036 and 20240430654). The authors thank Dr Chen-Hsiung Hung for assistance in the data collection.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Baggio, R., Garland, M. T. \& Perec, M. (1996). J. Chem. Soc. Dalton Trans. pp. 2747-2753.
Baggio, R., Garland, M. T. \& Perec, M. (2000). Inorg. Chim. Acta, 310, 103109.

Bruker (1999). SADABS (Version 2.0), SAINT (Version 6.02) and SMART (Version 5.6). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
Deisenhofer, J. \& Michel, H. (1989). EMBO. J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

